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The meaning of word 'Detection’ for GW community

Matched filter and cWB

Detector characterization

The Event: GW150914

For the content of this presentation, many thanks to
M. Drago (one of cWB developers)

and

G.M. Guidi (CBC Virgo-Ligo co-chair)
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v.k'c??)Tra nsient signals

Optimal Filter

What to do if we don’t know the signal

How we detect them Noise and data quality

Sky localization

Parameter estimation
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v.kfgg)ldeal world: Optimal filter

How we
can
extract

the signal

Our noise
is Gaussian
distributed
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At each time the signal
could be present or not
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v.k'é??) Hypothesis test

Signal presence

Yes No

. Yes
Decision

rule

No

At each time we can
decide that the signal

IS present or not
(decision rule)
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Signal presence

Yes No

Decision
rule

Yes True Alarm False Alarm

False True
Dismissal Dismissal

No

At each fime we
can decide that

the signal is
present or not
(decision rule)

Elena Cuoco, EGO

4 sifuations: two

right and other
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v.ggg)Neyman-Pearson criterion
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Signal presence

Decision
rule

Yes

True Alarm False Alarm

No

False True
Dismissal Dismissal

/
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At each time
we can
decide that

the signal is
present or not
(decision rule)

Neyman-
Pearson
criterion: best
decision rule gives
other wrong greater True Alarm

Rate at the same
False Alarm Rate

4 situations:
two right and
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Likelihood Ratio p o(x | h)

p(x]|0)
If our noise is Gaussian
— Noise model: Gaussian Noise

2 2
P(x|0) occexp[-Xx“ /o
4\ Detector Noise Variance

— Signal model: /

p(x | h) oc exp[—(x—h)? /o]

Signal
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Maximizing the likelihood

p—

(t) utl _(';X fS)n (hf )( 27r|ft df

/

Noise power spectral density

Template

Look for maxima of | p(t)| above

some threshold = trigger
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time

50
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ed filter search
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A key definition for the signal in the

detector noise is its SNR /

SNR = 2[[”‘(”I2 df172

S (F)
/

Noise power spectral density

Signal
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V.J)CBC Matched Filtering

We need a template waveform to use to extract the signal from the

background
/ h+x(t) éﬁme ” \
i.i . J\ U‘J u},‘i g ]
Inspiral Merger Ringdown
1S
G
@\&&’
g 1%
\_
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Detector response in the TT gauge can
be written as:

5()=F, (0,2,¥)h () + F (0,D,'¥)h (1)

Where F. and F. depend on the arms
orientation respect to the wave
propagation and the wave polarization

F (O®,0,¥)= %(1+ cos’ ®) cos 2d cos 2 — cos ®sin 2d sin 2¥ )

F (0,0,¥)= %(1+ cos” ®)cos 2dsin 2¥ —cos ®sin 2d cos 2V
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mission: inspiral phase
N

h% (t) = Agw(t) (1 + cos® ¢) cos gpaw(t)
hy(t) = —2Acw(t) COS@Sin Paw (t)

the inclination angle between the direction of
the detector as seen from the binary’s cenfter-

< of-mass, and the normal to the orbital plane )
During the inspiral, if the phase ¢, is computed using PN
expansion,at the leading order the phase evolution depends on the
chirp mass [ )
| (mim2)®*5 &[5 il
gW‘ﬂNMW A= 1m2 e 2 [_W—S/sf—u/sf]
(my+mjy)"> G L2
\ o ﬁﬁne befjfse coalégéence ()
Elena Cuoco, EGO
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—— Numerical relativity
—— Effective-one-body
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Comparison of the effective-one-body model to a numerical-relativity waveform
of a precessing black-hole binary. © A. Taracchini/AEl

10/3/2016 Elena Cuoco, EG



- _ Q)) E G Osiimiowm
v.k'c?%?) Building templates bank

« To cover in efficient way the
parameters space, we build
a templates bank requiring 10
that the signal can be ’
detected with a maximum
loss of 3% of its SNR

10
- A mismactch between "
templates is defined as

m; (Mg)

T;:Ti
(T, T) = (T): k)
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arXiv: 1602.03839
: | | |x1l| <l 01.9;;,(‘,;;,1|X2| < (l).osl /,I/;;\‘\ -
« ~ 250000 waveforms 1

\
771 Ixa,2] < 0.05 7 \
7/
o, e

\
777 Ixa2| < 0.9895 A | |

b I

)

~
[
N

- Component masses: [1,99] Mg

f—

]
|
N\

AN

* Total Mass: <100 M

Mass 2 [M

Dimensionless spins: <0.99 (0.05
for m<2M)

10°

101
Mass 1 [My]

Candidate and background events are divided into three
search classes (red, green, blue) based on femplate length

10/3/2016
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V.Rgg) Ligo-Virgo CBC pipelines

Currently three pipelines are used to detect gravitational waves through match filtering

Detector X
Data

Detector 1 Detector 2 I
Data Data
Average PSD over all
detectors. Create fixed bank.

Match Filter data
with template bank. P
Generate triggers.

Match Filter data
with template bank.

Match Filter data
with template bank.
Generate triggers.

Generate triggers.

l l

Calculate chi- Calculate chi-
square statistic and square statistic and
new SNR. new SNR.

—

Calculate chi-
square statistic and
new SNR.

—

Perform coincidence
test in mass
parameters and time.
Apply data quality

Use time shifts to calculate
the false-alarm rate of
coincident triggers.

Use simulated signals
to evaluate efficiency and
calculate rate limits.

pyCBC
(Usman et al, 2015)
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\

Identify
coincidences

\

FAR
computation

‘_.,

Clustering

\

Upload event
to GraceDb

MBTA
(Adams et al. 2015)

V1 trigger
selection

Elena Cuoco, EGO

Decimation Orthogonal Reconstruction  Interpolation and

of input FIR filters matrices SNR accumulation
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We need

some
. What to do if pipeline
c;"g:)?: Ignvg\?v OUr Noise s which does
e sianal NOT not rely on
J Gaussian the
knowledge

of waveform
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erent WavebBurst

Excess power are selected from
a set of wavelet time-frequency : ,
coherently to estimate signal

Maps S9!
e d  Waveform, wave polarization,

combined together constrained likelihood method

Triggers are analyzed

EUROPEAN
GRAVITATIONAL
OBSERVATORY

The event are ranked using a
variable n,

Selec_’rs the best fit waveform E. = Normalized coherent energy
wh|.ch coryesponds to ThQ between the two detectors
maximum likelihood statistic E, = normalized noise energy
over a 200000 sky positions derived by subtracting the

reconsfructed signal from the
data

10/3/2016 Elena Cuoco, EGO

TOP CORE (Ct)

CORE PIXELS (E)

BOTTOM CORE (Cb)

BOTTOM HALO (Hb)
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- End-to-end multi-detector coherent pipeline
—construct coherent statistics for detection and rejection of artifacts
— performs search over the entire sky
— estimates background with time shifts

-

—160

50

ks

30

20

frequency
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Not stationary

Not Gaussian

Contaminated by a lot of spurious events

10/3/2016 Elena Cuoco, EGO 26



= : : Q)] EG Ostavmmoun
v.k'c??)Identlfyng noise source

« Transient noise (glitches) can occur within the
targeted frequency range

+ More than 200000 auxiliary channels are recorded
to nglptnitor instrument behaviour and environmental
conditions

+ In the case of clear correlation within glitches in
gravitational wave channel and auxiliary ones, data
are discarded from the analysis (vetoed)

o o N
§ E : I I ! gﬁr{ui_ﬁhht(l
Q0 — L AR T BNEE B 1L e | E > 6.5
38, S b g | | | - ; X >3
S = 1% s | » |
N S 01k - AN AL AT ST A LA A | i
= - : : P Lo
S % : a1 e T f
N = 0.01F P (). it -1 f ----- I L. A M- W ¥+
= 1PN it ot Hiawe
[ | . H
O ' 2
0 1 2 3 | 5
\_ Time |weeks| from September 12 Yy
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- Data quality flags: exclude periods on the order of seconds
to hours when known noise couplings is met

— Category 1: critical issue
— Category 2. known coupling active
— Category 3: coupling mechanism not understood

- Data quality triggers: short duration vetoed generated by
algorithms that identify significant correlations between
triggers in h(t) and auxiliary channels

— Category 3
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V.k'&?) Data quality effects

arXiv: 1602.03844
1078,

T T I
Bl \flicr category ]

10 0 N After signal-consistency culs The impCICT of dOTO'C{UO“Ty
S| After category 2 3 vetoes and signol
consistency requirements on
the background trigger
distribution from the cWB
search for gravitational-
wave bursts by coherent
network SNR. The detected
coherent network SNR of

After catesory 3

l{]—l[l_

—

—

p—
—
—

Trigger rate |H

—

—

f—
—
b

12 14 16 18 20
Coherent Network SNR.

—
—
e
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Operational
Under Construction
Planned
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"x" pattern, Yy=r/4

Location in the sky

GW laser
interferometers are
not poinfing
telescopes

RMS antenraa pattern

Elena Cuoco, EGO
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Sky location can be
reconstructed
through the time of
arrival of GW
radiation at the
different detector
sites, as well as the
relative amplitude
and phase of the
GWs in different
detectors.
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The event
GW150914

14 September 2015
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w'ﬁ'gg September 14, 2015 - 11:50:45 CET

LIGO Hanford Observatory LIGO Livingston Observatory

512 60
N S
L 256 g
o 40 ©
c 128 k5
v N
> 64 20
ot S
- 2

32
0.30 0.35 0.40 0.45 0.30 0.35 0.40 045 O
Time (s) Time (s)

Initial detection made by a low latency
searches for generic GW fransients: Coherent
WaveBurst

Reported within 3 minutes after data
acquisition
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Strain (102")
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ued) Estimated GW Strain Amplitude @7F-Ow

Inspiral Merger Ring-
down

Full bandwidth waveforms
without filtering. Numerical
relativity models of black
hole horizons during
coalescence

Effective black hole

separation in units of |
. . -1.0 = Numerical relativity 7

SChWOrZSCh”d rOC“US I Reconstructed (template | I
(R=2GM/c?); and effective ; ; | ——
relative velocities given by 206 - 14 <
. 2 0.5 |{— Black hole separation 43 0o
pOST‘NeWTor“Gn pOrOmeTer g 0'4 === Black hole relative velocity 42 "‘g
— 3\1/3 < _ ©
v/c = (GMf/c?) T | . 1o §
0.30 0.35 0.40 0.45 9

Time (s)
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Assessing the statistical
significance of the event
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* Noise artefacts in more detectors can for
chance produce coincidences

- Time-shift procedure: characterize
statistically the rate of this accidental
coincidences

Original time-line (zero lag) Time sh(sf’r of IO1 datg nbore than 10ms
| 0 (' 0 L]

H1 0 0 H1 0 0
o—Q =0 o—Q o—Q o—9 o*—9 o*—9 o
Maximum coincidence time: 10 ms Maximum coincidence time: 10 ms

« Re-sampling many times give enough statistics to assess
confidence to an event on the zero lag (Background)
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Events classified in 3 different classes:

+ CI1 class = events with time-frequency morphology of known populations of
noise transients. excluded;

- C3 class = events with frequency that increases with time;

« C2 class = allremaining events.

Background evaluation = Based on the time shift method:

Number of shift produced an equivalent to 67400 years

10/3/2016 Elena Cuoco, EGO 4]
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mmm Search Result (C3)
— Search Background (C3) :
9 Search Result (C2+C3) ®
—— Search Background (C2+C3) T :

: FAR <1/22500 years, p <2x10°¢,
4.6 GW150914

+ C3: FAR <1/8400 years, p <5x10°¢, 4.4 o

=

= 8 :
10~° e s |
B |
10-8L— 1 . o

8 10 12 14 16 18 20 /=32

Detection statistic n¢
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it ary Coalescence search

Search tor GW emission by binary
system: fotal mass range 1- 99 Mg

SNR of the
Matched filter
computed as

function of time

: : Calculate :
. 5 p(t) and identify Combined
> 4 MgModel | ~2° X102 Wave | Pogximaand | p(6)2 omoatod by | SNR =236 FAR
based on PN, calculate c2to | =p®% +p@®)7 | CoMpUTed by D
: cover the : shifting 107 times | = 1/203,000
BH perturbation " test consistency .
theory and NR parameter with the equivalent to years
space eldhee of the SNR of 608,000 years 5.1 sigma
template, then each detector

apply detector
coincidence
within 15 ms
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The Parameter Estimation

10/3/2016 Elena Cuoco, EGO 45



V.'ﬁ'}?@) Source parameters for GW150914"

Primary black hole mass 3672 Mg
Secondary black hole mass 2917 Mg
Final black hole mass 6215 Mg
Final black hole spin I F Y g
Luminosity distance 4104_“%28 Mpc
Source redshift, z 009i88ﬁ

Estimated source parameters from GW150914. We report median
values with 90% credible intervals that include statistical errors
from averaging the results of different waveform models. Masses
are given in the source frame: to convert in the detector frame
multiply by (1+z )

10/3/2016 Elena Cuoco, EGO
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VIRG Sky location

" Sirius

~ Canopus

Sky at the time of the event, with the LALInference skymap,
contoured in deciles of probability. View is from the South
. . Atlantic Ocean, North at the top, with the Sun rising and the
Source locatfion with large Milky Way diagonally from NW to SE.

uncertainty ~ 600 deg?
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LOSC

hitps://losc.ligo.org/events/GW150914/

LIGO Open Science Center

LIGO is operated by California Institute of Technology and Massachusetts Institute of Technology
and supported by the U.S. National Science Foundation.

Getting Started
Tutorials

Data & Catalogs
Timelines

My Sources
Software

GPS « UTC
About LIGO
Student Projects
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Data release for event GW150914

This page has been prepared by the LIGO Scientific Collaboration (LSC) and the Virgo Collaboration to inform the broader
community about a confirmed astrophysical event observed by the gravitational-wave detectors, and to make the data around
that time available for others to analyze. There is also a technical details page about the data linked below, and feel free to
contact us. This dataset has the Digital Object Identifier (doi) http://dx.doi.org/10.7935/K5MW2F23

Summary of Observation

The event occurred at GPS time 1126259462.39 == September 14 2015, 09:50:45.39 UTC. The false alarm rate is estimated
to be less than 1 event per 203,000 years, equivalent to a significance of 5.1 sigma. The event was detected in data from
the LIGO Hanford and LIGO Livingston observatories.

e There are Science Summaries, covering the information below in ordinary language.
® There is a one page factsheet about GW150914, summarizing the event.

Elena Cuoco, EGO
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PRL 116, 061102 (2016) PHYSICAL REVIEW LETTERS 12 FEBRUARY 2016

£

Observation of Gravitational Waves from a Binary Black Hole Merger

B.P. Abbott ef al.”

(LIGO Scientific Collaboration and Virgo Collaboration)
(Received 21 January 2016; published 11 February 2016)

On September 14, 2015 at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitational-Wave
Observatory simultancously observed a transient gravitational-wave signal. The signal sweeps upwards in
frequency from 33 (o 250 Hz with a peak gravitational-wave strain of 1.0 x 107!, It matches the wavelorm
predicted by general relativity for the inspiral and merger of a pair of black holes and the ringdown of the
resulting single black hole. The signal was observed with a matched-filter signal-to-noise ratio of 24 and a
false alarm rate estimated to be less than | event per 203 000 years, equivalent o a significance greater
than 5.1¢. The source lies ata luminosity distance off 4|01,’g,’ Mpc corresponding to a redshilt z = 0.09f{,'|{i: 2
In the source frame, the initial black hole masses are 36::M o and 2‘):,4Mf;,, and the final black hole mass is
6273 M., with 3.0703M ¢” radiated in gravitational waves. All uncertaintics define 90% credible intervals.
These observations demonstrate the existence of binary stellar-mass black hole systems. This is the lirst direct
detection of gravitational waves and the first observation of a binary black hole merger,

DOL: 10,1 103/PhysRevLett. 1 16.061102

Phys. Rev. Lett. 116, 061102 (2016)
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