La prima immagine di un buco nero: i risultati di M87

Elisabetta Liuzzo & Kazi Rygl INAF-Istituto di Radioastronomia - Bologna/ Italian node of the European ALMA Regional Centre (ARC)

ALMA Regional Centre || Italian

Bologna, 30 May 2019

INAF

ISTITUTO NAZIONALE DI ASTROFISICA

Curvature of space-time

Predicted light bending for grazing incidence at solar radius (70,000km): 1.75 arcsec

Predicted light bending for grazing radius at 3*Schwarzschild radii for a 1Msun BH (9km): 37.7 degree

Horizon Telescope

Bologna, 30 May 2019

INAF

ISTITUTO NAZIONALE **DI ASTROFISICA**

General Relativity and Black Holes

- Black holes (BHs) are one of the most fundamental and extreme predictions of GR characterised by mass, spin (a_{*}=Jc/GM²) and charge.
- The event horizon is the defining feature of a BH and yet, we have never seen the event horizon

 $\frac{2GM}{c^2}$ R_{Sch}

How to directly observe a BH? Emission ring: gravitational lensing and Doppler beaming

Lensed photon ring radius:

Bardeen 1973, Luminet 1979 Falcke, Melia & Agol 2000 Broderick & Loeb 2006 Younsi, Bronzwaer, Davelaar 2018

 $R_{ring} =$

Shadow size and shape encodes GR (Psaltis & Johansen 2010).

Black holes types

Stellar mass BH (first BH observed indirectly in XRB, Cyg X-1) masses ~up to tens of Msun

Artist impression of Cygnus X1 feeding off a blue supergiant (NASA/CXC/M.Weiss)

Supermassive BH in the center of Active Galactic Nuclei masses > 10⁶ Msun

Composite image: ESO/WFI (Optical); MPIfR/ESO/APEX/A.Weiss et al. (Submillimetre); NASA/CXC/CfA/R.Kraft et al. (X-ray

Horizon Felescope

Bologna, 30 May 2019

ΝΔΕ

UTO NAZIONALE DI ASTROFISICA

Event

Horizon

ISTITUTO NAZIONALE **DI ASTROFISICA** 20 ANNI DI RICERCA SCIENTIFICA DI ECCELLENZA

Very Long Baseline Interferometry!

-lorizon Felescope

- VLBI angular resolution depending on max the distance between an antenna pair, and observing wavelength
- Each antenna observes at the same time the target
- Signal synchronized through atomic clock with precision of 1 s in 100 million years
- Plasma around BH emits at 1.3 mm!

$$= 25 \mu \text{asec}$$

NAF tituto nazionale

Event Horizon Telescope

> 200 members

13 stakeholder institutes

> 50 affiliated institutes

In Italy: INAF-IRA, Bologna INFN & Uni Napoli

Bologna, 30 May 2019

INAF

ISTITUTO NAZIONALE DI ASTROFISICA

BlackHoleCam Project - ERC Synergy Grant 2014

Pis: H. Falcke (Radboud), M. Kramer (MPIfR), L. Rezzolla (Frankfurt)

Project Scientist:

- Ciriaco Goddi (Radboud/Leiden)
- Project Manager:
- Remo Tilanus (Radboud/Leiden)

EU Players & Partners

- Amsterdam: Multi-wavelength observ.
- Bonn VLBI: Data correlation, APEX tel.
- ESO: ALMA telescope
- IRAM: Pico Veleta & NOEMA telescopes
- JIVE: VLBI analysis software
- Rhodes Univ.: VLBI Simulations
- Sweden: Polarisation calibration
- INAF-IRA, IT-ARC: Data calibration

NAF

ISTITUTO NAZIONALE DI ASTROFISICA

20 ANNI DI RICERCA SCIENTIFICA DI ECCELLENZA

EHT primary targets:

M87 :

LLAGN 55 milions light years ~7 billions Msun

M87 : D~17 Mpc, $M_{BH} \sim 6.5 \times 10^9 M_{\odot}$ => $\Theta_{ring, diameter} \sim 40$ micro-arcseconds Sgr A* :

LLAGN 25000 light years ~4 milions Msun

D~8 kpc, M_{BH}~4.3x10⁶ M_.

=> $\boldsymbol{\Theta}_{ring, diameter} \sim 50$ micro-arcseconds

M87 is ~2000 times more distant but almost 2000 more massive!

=> Gravitationally-lensed size ~40-50 micro-arcseconds

Event Horizon Telescope

NAF STITUTO NAZIONALI

M87: first image of a black hole shadow

Data from 4 observing nights in 2017, 8 telescopes. Observing wavelength 1.3mm, largest baseline 10,700 km

Event Horizon Telescope EHT Coll. 2019

INAF

ISTITUTO NAZIONALE DI ASTROFISICA

20 ANNI DI RICERCA SCIENTIFICA DI ECCELIENZA

The ALMA/APEX component is crucial

Credit: EHT collaboration, Paper IV, 2019

Bologna, 30 May 2019

INAF ISTITUTO NAZIONALE

Fidelity of calibration and imaging

3 different calibration softwares
3 different imaging softwares
Result: consistent structure for M87* black hole shadow

Credit: EHT collaboration, Paper IV, 2019

M87 measured quantities

Important derived quantities:

- Ring diameter: $42 \pm 3 \mu as$ \rightarrow confirms GR
- Axial ratio: < 4:3

 \rightarrow indication of **rotating (Kerr) BH**

PA brightest peak: 150-200 degree (EoN)
 → doppler boosting effect

200

ISTITUTO NAZIONALE DI ASTROFISICA

M87 measured quantities

Other image quantities for model comparison :

- Ring width: $< 20 \mu as$
- Flux ratio (peak/central depression): > 10:1
- Total flux density: 0.5Jy
- Peak brightness temperature: 6x10⁹ K
- Variable on small scales (<25 μ as)

Black Hole anatomy

Event Horizon Telescope

Bologna, 30 May 2019

INAF

ISTITUTO NAZIONALE DI ASTROFISICA

M87 emission mechanism

Optically thin **synchrotron emission** (already at 7mm, Hada+ 2011)

Power-law distribution of relativistic electrons:

Horizon Telescope

Plasma composition

Prescription:

non relativistic ions + relativistic electrons with

- $T_i = T_e$ in the funnel
- $T_e < T_i$ in the disk midplane

Bologna, 30 May 2019

INAF

ISTITUTO NAZIONALE **DI ASTROFISICA**

Accretion mechanism

Radiatively inefficient accretion flow models

For LLAGN M87 (from EHT data)

Event

Horizon

Telescope

```
M
   \frac{1}{2} = 2 \times 10^{-5}
\overline{\dot{M}_{\rm Edd}}
```


M87 simulations: 43 GRMHD, > 60, 000 images

SANE: Φ low **MAD:** Φ high where Φ is magnetic flux

 $\mathbf{a}_* = BH spin$

R_{high}~T_{lon}/T_{e-} (if >> jet is dominant)

Simulated EHT observations

Simulation convolved with 20 µas PSF

Event Horizon Telescope EHT collaboration: Paper V, 2019

Bologna, 30 May 2019

INAF ISTITUTO NAZIONALE DI ASTROFISICA

M87 ring asymmetry

Due to Doppler boosting

BH spin orientation dependent

a. BH spin w.r.t. accretion flow, *i* angle between disk angular momentum vector and line of sight EHT collaboration: Paper V 2019

Event Horizon Telescope

Bologna, 30 May 2019

INAF

ISTITUTO NAZIONALE DI ASTROFISICA

M87 Black hole characterization

Other constraints:

- Must not overproduce X-rays
- Must produce jet power
- Close to radiative equilibrium

The zero rotation models are excluded!

M87 hosts a Kerr BH of M~6.5 10⁹ M^o confirming the estimation based on stellar dynamics (Gebhardt+ 2011)

ISTITUTO NAZIONALE DI ASTROFISICA

Constraint Summary

	Event
∰≯•	Horizon
	Telescope

	• · · · · · · · · · · · · · · · · · · ·							
	$flux^1$	$a_{*}{}^{2}$	$R_{\mathrm{high}}{}^3$	AIS^4	ϵ^5	L_X^{6}	$P_{\rm jet}{}^7$	
	SANE	-0.34	ì	Fail	1 ass	1 ass	1 ass	Fail
	SANE	-0.94	10	Pass	Pass	Pass	Pass	Pass
Most SANE models fail	SANE	-0.94	20	Pass	Pass	Pass	Pass	Pass
THOST SAILE INCOMES ION,	SANE	-0.94	40	Pass	Pass	Pass	Pass	Pass
except $a_* = -0.94$ and	SANE	-0.94	80	Pass	Pass	Pass	Pass	Pass
a = 0.91 models	SANE	-0.94	160	Pass	Pass	Pass Fail	Fail	Fail
$U_* = 0.74$ models	SANE	-0.5	10	Pass	Pass	Fail	Fail	Fail
with large R.	SANE	-0.5	20	Pass	Pass	Pass	Fail	Fail
high	SANE	-0.5	40	Pass	Pass	Pass	Fail	Fail
	SANE	-0.5	80	Fail	Pass	Pass	Fail	Fail
Largo fraction of MAD	SANE	-0.5	160	Pass	Pass	Pass	Fail	Fail
	SANE	0	1	Pass	Pass	Pass	Fail	Fail
model nass excent	SANE	0	10	Pass	Pass	Pass	Fail	Fail
	SANE	0	20	Pass	Pass	Fail	Fail	Fail
a, =0 and small R.	SANE	0	40	Pass	Pass	Pass	Fail	Fail
high	SANE	0	80	Pass	Pass	Pass	Fail	Fail
	SANE	0	160	Pass	Pass	Pass	Fail	Fail
	SANE	+0.5	1	Pass	Pass	Pass	Fail	Fail
	SANE	+0.5	10	Pass	Pass	Pass	Fail	Fail
	SANE	+0.5	20	Pass	Pass	Pass	Fail	Fail
	SANE	+0.5	40	Pass	Pass	Pass	Fall	Fail
	SANE	+0.5	160	Pass	Pass	Pass	Fail	Fail
	SANE	± 0.04	1	Page	Fail	Page	Fail	Fail
	SANE	+0.94	10	Pase	Fail	Pase	Fail	Fail
	SANE	+0.94	20	Pass	Pass	Pass	Fail	Fail
	SANE	± 0.94	40	rass	rass	rass	гап	ган
	SANE	+0.94	80	Pass	Pass	Pass	Pass	Pass

SANF

MAD

AIS^4	ϵ^5	L_X^{6}	${P_{\rm jet}}^7$		flux^1	$a_{*}{}^{2}$	${R_{\mathrm{high}}}^3$	AIS^4	ϵ^5	L_X^{6}	${P_{\rm jet}}^7$	
Fan	1 455	1 455	1 455	Fan	MAD	-0.94	1	Fail	Fail	Pass	Pass	Fail
Pass	Pass	Pass	Pass	Pass	MAD	-0.94	10	Fail	Pass	Pass	Pass	Fail
Pass	Pass	Pass	Pass	Pass	MAD	-0.94	20	Fail	Pass	Pass	Pass	Fail
Pass	Pass	Pass	Pass	Pass	MAD	-0.94	40	Fail	Pass	Pass	Pass	Fail
Pass	Pass	Pass	Pass	Pass	MAD	-0.94	80	Fail	Pass	Pass	Pass	Fail
Fail	Pass	Pass	Pass	Fail	MAD	-0.94	160	Fail	Pass	Pass	Pass	Fail
Pass	Pass	Fail	Fail	Fail	MAD	-0.5	1	Pass	Fail	Pass	Fail	Fail
Pass	Pass	Fail	Fail	Fail	MAD	-0.5	10	Pass	Pass	Pass	Fail	Fail
Pass	Pass	Pass	Fail	Fail	MAD	-0.5	20	Pass	Pass	Pass	Pass	Pass
Pass	Pass	Pass	Fail	Fail	MAD	-0.5	40	Pass	Pass	Pass	Pass	Pass
Fail	Pass	Pass	Fail	Fail	MAD	-0.5	80	Pass	Pass	Pass	Pass	Pass
Pass	Pass	Pass	Fail	Fail	MAD	-0.5	160	Pass	Pass	Pass	Pass	Pass
Pass	Pass	Pass	Fail	Fail	MIND	0	1	1 000	Tan	1 000	Tan	Fair
Pass	Pass	Pass	Fail	Fail	MAD	0	10	Pass	Pass	Pass	Fail	Fail
Pass	Pass	Fail	Fail	Fail	MAD	0	20	Pass	Pass	Pass	Fail	Fail
Pass	Pass	Pass	Fail	Fail	MAD	0	40	Pass	Pass	Pass	Fail	Fail
Pass	Pass	Pass	Fail	Fail	MAD	0	80	Pass	Pass	Pass	Fail	Fail
Pass	Pass	Pass	Fail	Fail	MAD	0	160	Pass	Pass	Pass	Fail	Fail
Pass	Pass	Pass	Fail	Fail	MAD	10.5	1	P	E-il	Dees	P. d	E-1
Pass	Pass	Pass	Fail	Fail	MAD	+0.5	10	Pass	Pass	Pass	Pass	Pass
Pass	Pass	Pass	Fail	Fail	MAD	+0.5	20	Pass	Pass	Pass	Pass	Pass
Pass	Pass	Pass	Fail	Fail	MAD	+0.5	40	Pass	Pass	Pass	Pass	Pass
Pass	Pass	Pass	Fail	Fail	MAD	+0.5	80	Pass	Pass	Pass	Pass	Pass
Pass	Pass	Pass	Fail	Fail	MAD	+0.5	160	Pass	Pass	Pass	Pass	Pass
Pass	Fail	Pass	Fail	Fail	MAD	+0.94	1	Pass	Fail	Fail	Pass	Fail
Pass	Fail	Pass	Fail	Fail	MAD	+0.94	10	Pass	Fail	Pass	Pass	Fail
Pass	Pass	Pass	Fail	Fail	MAD	+0.94	20	Pass	Pass	Pass	Pass	Pass
rass	rass	rass	гап	гап	MAD	+0.94	40	Pass	Pass	Pass	Pass	Pass
Pass	Pass	Pass	Pass	Pass	MAD	+0.94	80	Pass	Pass	Pass	Pass	Pass
Pass	Pass	Pass	Pass	Pass	MAD	+0.94	160	Pass	Pass	Pass	Pass	Pass

ISTITUTO NAZIONALE DI ASTROFISICA

NNI DI RICERCA SCIENTIFICA DI ECCELLENZA

Bologna, 30 May 2019

160

SANE +0.94

Where do mm photons originate? SANE ($a_* = 0.96$)

Bologna, 30 May 2019

INAF

ISTITUTO NAZIONALE

DI ASTROFISICA

Where do mm photons originate? MAD ($a_* = 0.96$)

Bologna, 30 May 2019

INAF
 ISTITUTO NAZIONALE
 DI ASTROFISICA
 20 ANNI DI RICERCA
 SCIENTIFICA DI ECCELLENZA

AGN jet regions

Event

Horizon

Telescope

ISTITUTO NAZIONALE **DI ASTROFISICA**

INAF

Jet launching mechanism

- BH launched jet: Blandford & Znajek (1977)
- Disk launched jet: Blandford & Payne (1982)
- Combination

Image credit: Dobbie+ 2009

M87 data in agreement with BZ jet

Event Horizon Telescope

Bologna, 30 May 2019

INAF ISTITUTO NAZIONALE

DI ASTROFISICA

- Jet acceleration mechanism through Magnetic field study: Data are there!
- Multi-wavelength data analysis to connect with EHT results: Multi-band campaign are ongoing

Image credit: Kato+ 2004

INAF

20 ANNI DI RICERCA SCIENTIFICA DI ECCELIENZA

ISTITUTO NAZIONALE DI ASTROFISICA

Sagittarius A* in the center of the Milky Way

Difficulties:

- Intra-Hour Variability
- Scattering

Data already taken \rightarrow working in progress

Credit: Moscibrodzka et al. 2016, Johnson et al. 2018

NAF STITUTO NAZIONALE

FICA DI ECCELLENZA

Horizon Felescope

More telescopes, higher observing frequency

Bologna, 30 May 2019

ISTITUTO NAZIONALE 20 ANNI DI RICERCA SCIENTIFICA DI ECCELLENZA

DI ASTROFISICA

Future of VLBI: space

Bologna, 30 May 2019

INAF

ISTITUTO NAZIONALE DI ASTROFISICA